

Heterodyne Reflectometry for Angstroms-thick Thin Films

Arun Aiyer, Ken Harvey, Andy Kueny, Mark Meloni Verity Instruments Inc, Carrollton, TX

Ajith Varghese, Jonathan VanBuskirk, Malcolm Bevan Texas Instruments, Richardson, TX

AEC /APC Symposium September 2005

Outline

Classical Heterodyne Interferometer (HI)

Adapting HI for Reflectometry

Heterodyne Reflectometer (HR) Results

Difference between HR and Ellipsometer

Advantages

Classical Heterodyne Interferometer

Heterodyne Reflectometer (HR)

Employs single wavelength at fixed incidence angle

Dynamic range >0 - 1000Å. Extendable by switching λ

Current theoretical resolution of ~ 0.5Å

Roadmap in place to improve resolution to 0.05Å

Unlike ellipsometry HR measures thickness directly

Computed HR Signal

$$\int_{f} d = \frac{2\delta \times \lambda}{4\pi \times \sqrt{n^2 - \sin^2 \alpha}}$$

Physics of Heterodyne Reflectometer

When α is Brewster's angle, only s- polarization (ω) is reflected from top surface and p- polarization is transmitted into the film and reflected by the substrate.

Interference between this s- pol. and p- pol ($\omega+\delta\omega$) reflected by the interface will generate a beat frequency at $\Delta\omega$.

$$R_{eff} \approx K \times \cos(\Delta \omega t + 2\delta)$$
 $\delta = \frac{2\pi \times d_f \sqrt{n^2 - \sin^2 \alpha}}{\lambda}$

Measured HR Signal

$$d_{sample} = \frac{d_{ox} \times \sqrt{n_{ox}^2 - \sin^2 \alpha} + 2\delta \times \lambda / 4\pi}{\sqrt{n_{sample}^2 - \sin^2 \alpha}}$$

HR Data vs. Ellipsometer Data. Sub 100Å films

Ellipsometry data provided by Univ. of Texas, Dallas ~ 30 – 31Å First proof of HR measurement ability

HR Measurement vs. Ellipsometer Measurement sub 10Å films

UTD and Verity measured different samples taken from the same wafer

HR measurements of SiO₂ and SiON Films

Description	HR	Ellipsmtr	XPS
	Å	Å	Å
12A oxide	11.01	11.87	11.52
13A oxide	11.54	12.62	12.42
PNO.C2	13.49	14.28	14.76
PNO.C3	14.34	15.01	15.72

HR Repeatability Study

With Current resolution, static repeatability (1σ) better than 0.02%

HR vs. Ellipsometer

HR

Uses single λ source at fixed angle

Measures phase shift 2δ

 $d \propto to measured 2\delta$

$$\left(d_f \approx \frac{2\delta \times \lambda}{4\pi \times \sqrt{n^2 - \sin^2 \alpha}}\right)$$

Error in incidence angle has minimal impact on thickness accuracy 0.05Å for 10Å for 10 error

Uses no moving optical components

Larger MTBF

IM solution possible

Ellipsometer

Uses single λ source at fixed angle

Measures ψ and Δ

d extracted from thin film model using ψ and Δ

$$\tan \psi e^{i\Delta} = \left(\frac{r_{1p} + r_{2p}e^{-i2\delta}}{1 + r_{1p}r_{2p}e^{-i2\delta}}\right) \left(\frac{1 + r_{1s}r_{2s}e^{-i2\delta}}{r_{1s} + r_{2s}e^{-i2\delta}}\right)$$

Sensitivity of Δ is critically dependent on incidence angle

Mechanically or electro-optically active components used e.g., rotating compensator, piezo modulator etc.

IM solution possible

Potential Advantages

- Uses single non-actinic wavelength at fixed incidence angle
 - Mitigates photo contamination issues
- Current measurement resolution of ~ 0.5Å
 - Working to improve resolution to ~ 0.05Å
 - Static repeatability (σ) better than 0.02%
- Application: Gate dielectrics, metal films
- Can be integrated with process tool
- Potential exists for retrofitting existing process tool

Acknowledgement

- Prof. Bob Wallace of UT, Dallas
 - for providing thin film samples of Oxide and HfSiO
 - for providing ellipsometry data

